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Abstract The propagation of guided waves in photonic crystal fibers (PCFs) is studied.
A photonic crystal fiber can be regarded as a perfect two-dimensional photonic crystal (PC)
with a line defect along the axial direction. Under the assumption that the background spec-
trum has gaps, we give a simple condition on the parameters of the medium and of the line
defect, which ensures the rise of eigenvalues in a specified subinterval of the given gap of
the photonic crystal fiber. Using the modified Combes-Thomas estimates, we prove that the
eigenfunctions corresponding to the eigenvalues decay exponentially away from the line
defect.

Keywords Maxwell’s equations · Photonic crystal fibers · Band gap · Guided waves ·
Line defects · Combes-Thomas estimates

1 Introduction

Photonic crystals (PCs) are periodically structured dielectric media, which are designed to
favor band gaps, i.e., monochromatic electromagnetic waves of certain frequencies can not
propagate through these structures. The fact that photonic crystals exhibit band gaps that
bear a resemblance to semiconductors is, naturally, of tremendous interest in physics [17].
Since the first proposals of a photonic band gap effect by Yablonovitch [29] and John [16],
lots of applications have been studied. Among these applications, photonic crystal fibers
(PCFs) as fundamental transmission media to guide electromagnetic waves have been in-
tensively studied. See, e.g., [2, 3, 6, 7, 20, 21]. Photonic crystal fibers consist of a periodic
array of two different optical transparent materials running through the length of the fibers
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with a central line defect which serve as the core for light guiding. Physically, guided waves
(or guided modes) can be created in these structures, i.e., electromagnetic waves of certain
frequencies which propagate along the line defects of these structures are exponentially de-
caying in the transversal directions. (Note that, however, it is not proven in this paper that
these modes are truly propagating rather than forming bound states. For a detailed discussion
on this subject, we refer to [23].)

To the best of our knowledge, although this phenomenon has been intensively studied in
physical experiments and numerical simulations, theoretical studies are few. Similar prob-
lems were studied in various circumstances. For instance in [9–11] they studied the localiza-
tion phenomenon in 3D photonic crystals, in particular they proved the existence of bound
states, confinements of impurity modes, and so on. As a closed related result, a line defect
in the 2D photonic crystal was studied [23], in which the existence of the impurity spectrum
in the gap (of the unperturbed operator) and, the exponential decay of the generalized eigen-
functions were proved. Note that a different physical background was considered there in
comparison with ours, we refer to [23] for details. Recently, in [28], the transverse electric
(TE) and transverse magnetic (TM) cases were studied. More precisely, in TM case, a guided
wave only has a longitudinal electric field and a purely transverse magnetic field. Similarly,
in TE case, a guided wave only has a longitudinal magnetic field and a purely transverse
electric field. By dealing with the two 2D scalar differential equations, they proved the ex-
ponential decay of the guided waves in the cladding.

We have previously given rigorous proofs of the stability of essential spectrum, i.e., line
defects do not change the essential spectrum of the background spectrum of the 2D operator
generated on the cross-section [25] (see also Theorem 2.2 in this paper), which plays a key
role for studying eigenvalues created by line defects. In this paper we continue our study for
understanding this phenomenon. Under the assumption that the spectrum of the background
medium has gaps, we give a sufficient condition to ensure the rise of eigenvalues in a speci-
fied subinterval of the given gap of the background spectrum. Physically, this means that if
the background spectrum has band gaps, it is possible to guide electromagnetic waves with
suitable cores. We also prove that the eigenfunctions corresponding to the eigenvalues decay
exponentially away from the line defect. To do so, a Combes-Thomas estimate is needed. It
is worth noting that some techniques used in this paper are inspired by the works of Figotin
and Klein [9–11] and Kuchment and Ong [23].

This paper is outlined as follows. In Sect. 2, we show that this problem can be treated
as an eigenvalue problem about a family of noncompact self-adjoint operators. In Sect. 3,
we give a constructive method to prove the existence of eigenvalues created by line defects
in the gap of the background spectrum. The Combes-Thomas estimates are formulated in
Sect. 4. Finally, in Sect. 5 we prove that the eigenfunctions corresponding to the eigenvalues
decay exponentially away from the line defect.

2 Mathematical Formulation

We will first give rigorous descriptions of some special photonic crystals and photonic crys-
tal fibers. We adapt the following notations:

�x = (x�, x3)
� ∈ R

3, x = (x1, x2)
� ∈ R

2.

We consider a lossless inhomogeneous dielectric medium occupying the whole space R
3.

The measurable functions ε0(�x) and μ0(�x), which describe the medium are called electric
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Fig. 1 The line defect is shown
on the cross section of the
photonic crystal fiber as a darker
region

permittivity and magnetic permeability, respectively. We assume that ε0(�x) and μ0(�x) are
invariant under any translation in the third normal direction x3

ε0(�x) = ε0(x), μ0(�x) = μ0(x). (1)

We also assume that there exist constants ε0,± and μ0,± such that

0 < ε0,− ≤ ε0(�x) ≤ ε0,+ < ∞, 0 < μ0,− ≤ μ0(�x) ≤ μ0,+ < ∞ a.e. (2)

Such general conditions on ε0(�x) and μ0(�x), particularly the lack of smoothness, are re-
quired on physical grounds [10]. If they are periodic functions of the transverse variable x

satisfying,

ε0(x + �n) = ε0(x), μ0(x + �n) = μ0(x) for all �n ∈ Z
2, x ∈ R

2, (3)

these structures are often called (two-dimensional) photonic crystals, or photonic band gap
materials [17] (see Fig. 1). However, we don’t require the functions ε0(x) and μ0(x) to sat-
isfy the condition (3) in this paper unless stated otherwise. Furthermore, a photonic crystal
fiber is created if a line defect along x3-direction is introduced. We describe the defect strip
by

�̃l = {�x = (x�, x3)
� ∈ R

3 | x3 ∈ R, x ∈ �l} for l > 0

where

�l ≡ l� (4)

is the support of the perturbation in the transverse plane. We assume that � is a measurable
compact subset of R

2. Without loss of generality, we also assume that the origin is an inner
point of �. Inside the defect, the dielectric medium can be different from the background
medium.
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We use ε(�x) and μ(�x), independently of x3-variable,

ε(�x) = ε(x), μ(�x) = μ(x), (5)

to describe any media throughout this paper. Of course we do not require ε and μ to satisfy
condition (3). The Maxwell’s equations that govern the propagation of light and electromag-
netic waves in the medium in absence of free charges and currents look as follows:

⎧
⎪⎨

⎪⎩

∇�x × E(�x, t) + ∂B(�x, t)

∂t
= 0, ∇�x · B(�x, t) = 0,

∇�x × H(�x, t) − ∂D(�x, t)

∂t
= 0, ∇�x · D(�x, t) = 0,

(6)

where E(�x, t),H(�x, t) are the electric and magnetic fields, and D(�x, t) and B(�x, t) are
the displacement and magnetic induction fields, correspondingly. The so-called constitutive
relations are

D(�x, t) = ε(x)E(�x, t), B(�x, t) = μ(x)H(�x, t).

We consider time-harmonic waves

E(�x, t) = eiωt
E(�x), H(�x, t) = eiωt

H(�x),

where ω > 0 is the angular frequency. It leads from (6) to

{
∇ × E(�x) + iωμH(�x) = 0, ∇ · (μH) = 0,

∇ × H(�x) − iωεE(�x) = 0, ∇ · (εE) = 0.
(7)

Since the functions ε(�x) and μ(�x) satisfy condition (5), guided waves are expected to
propagate along x3-direction in the medium. The rigorous definition of guided waves is as
follows

Definition 2.1 Guided waves are solutions of (7) on the form

{
E(�x) = (

E1(x),E2(x),E3(x)
)�

e−iβx3 ,

H(�x) = (
H1(x),H2(x),H3(x)

)�
e−iβx3 ,

(8)

and
∫

R2
(ε|E|2 + μ|H |2)dx < ∞,

where

E = (
E1(x),E2(x),E3(x)

)�
, H = (

H1(x),H2(x), H3(x)
)�

and β > 0 is the wave number in the x3-direction.

We will introduce the following notation:

∇β =
(

∂1

∂2

0

)

− iβ

(0
0
1

)

=
(

∂1

∂2

−iβ

)

,
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where ∂1 = ∂/∂x1, ∂2 = ∂/∂x2. Furthermore, we define

∇βφ = (∂1φ, ∂2φ,−iβφ)�,

∇β × �u = (∂2u3 + iβu2,−∂1u3 − iβu1, ∂1u2 − ∂2u1)
� (9)

and

∇β · �u = ∂1u1 + ∂2u2 − iβu3,

where �u = (u1, u2, u3)
�, and φ = φ(x) is a scalar function.

Now plugging formula (8) into (7) and eliminating E or H , one obtains

ε−1∇β × μ−1∇β × E = λE, (10)

μ−1∇β × ε−1∇β × H = λH, (11)

where λ = ω2.
We first consider the E-formulation (10). In the following, some functional spaces are

useful. We shall denote for any 3D vector field �u = (u1(x), u2(x), u3(x))� the transverse
field by u = (u1(x), u2(x))�, thus we have �u = (u�, u3(x))�. We define the scalar-valued
operator

curlu = ∂1u2 − ∂2u1,

and the space

H(curl,R
2) = {u ∈ L2(R2;C

2) | curlu ∈ L2(R2;C)}
with the norm

‖u‖2
H(curl,R2)

= ‖u‖2
L2(R2)2 + ‖ curlu‖2

L2(R2)
.

A standard Sobolev space is also needed

H 1(R2) = {φ ∈ L2(R2;C) | ∇φ ∈ L2(R2;C
2)}.

Furthermore, we also define

Hε = L2(R2;C
3) (12)

equipped with the weighted inner product

〈�u, �v〉ε =
∫

R2
ε �u · �vdx

and the norm ‖�u‖ε = √〈�u, �u〉ε , where �v means the conjugate of �v.
We introduce

Vε = {�u ∈ Hε | ∇β × �u ∈ Hε}. (13)

The space Vε is a Hilbert space equipped with the norm

‖�u‖2
Vε

=
∫

R2
ε(|�u|2 + |∇β × �u|2)dx.

In the following of this section we review some results obtained in [25]. We do not
attempt to give the detailed proofs of them in this paper.
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Lemma 2.1 Vε is isomorphic into H(curl,R
2) × H 1(R2) and the norm ‖ · ‖Vε is equivalent

to the norm ‖ · ‖H(curl,R2)×H 1(R2), i.e.,

Vε = {�u | �u = (u�, u3)
� ∈ H(curl,R

2) × H 1(R2)}.

As in [4, 18], we will give a formulation of the problem in which the divergence-free
condition

∇β · (εE) = 0 for E = (E1,E2,E3)
� satisfing (10) and λ �= 0

is included in the functional framework. With such a formulation we can work equivalently
with the E-formulation (10) or the H -formulation (11) which allows us to take profit from
the natural symmetry of Maxwell’s equations with respective to E and H . Towards this goal,
we shall give a modified Weyl’s decomposition.

Lemma 2.2 The space Hε can be decomposed to the direct sum of the spaces Hε(β) and
G(β)

Hε = Hε(β) ⊕ G(β), (14)

where

Hε(β) = {�u ∈ Hε | ∇β · (ε �u) = 0}
and

G(β) = {∇βφ | φ ∈ H 1(R2)}.
The sum (14) is orthogonal with respect to the scalar product with the weight ε(x)dx.

We define the Maxwell operator Aε(β) = ε−1∇β × μ−1∇β× as the nonnegative self-
adjoint operator on L2(R2;C

3), uniquely defined by the nonnegative quadratic form given
as the closure of

aε(β; �u, �v) =
∫

R2
(μ−1∇β × �u) · (∇β × �v)dx, �u, �v ∈ C1

0 (R
2;C

3).

We can describe the structure of Aε(β) by

Lemma 2.3

i) KerAε(β) = G(β),
ii) ImAε(β) ⊂ Hε(β).

Since Aε(β) |G(β)= 0, we have σ(Aε(β)) = {0} ∪ σ(Aε(β) |Hε(β)∩Vε ). It is natural to
work on the restriction of Aε(β) to the space Hε(β) ∩ Vε , i.e.,

Aε(β) := Aε(β) |Vε(β),

where

Vε(β) := Hε(β) ∩ Vε = {�u ∈ Vε | ∇β · (ε �u) = 0} (15)
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with Vε defined in (13). The closed quadratic form aε(β; ·, ·) corresponding to Aε(β) is

aε(β ; �u, �v) =
∫

R2
(μ−1∇β × �u) · (∇β × �v)dx for all (�u, �v) ∈ Vε(β) × Vε(β). (16)

Next, a two dimensional scalar-valued operator div is defined by

divu = ∂1u1 + ∂2u2 for u = (u1, u2)
�.

Theorem 2.1 For any β > 0, the operator Aε(β) is self-adjoint, positive and

σ(Aε(β)) ⊂ [ρ−β2,∞),

where

ρ− = infx∈R2

(
ε−1(x)μ−1(x)

)
> 0. (17)

Remark 2.1 Theorem 2.1 is just the first step for studying the spectral properties of Aε(β).
It is well-known that the spectrum of Aε(β) consists of an essential spectrum corresponding
to a continuum of radiating modes and a point spectrum corresponding to guided modes. Of
course the radiating modes have no finite energy in the transverse plane.

In the sequel, we describe the background medium by ε0 and μ0, and the perturbed
medium by ε̃(x) and μ̃(x). We adapt Aε̃(β) and Aε̃ (β) as the perturbed operator according
to Aε0(β) and Aε0(β), respectively. We also introduce

η(x) = μ̃−1(x) − μ−1
0 (x), ξ(x) = ε̃−1(x) − ε−1

0 (x) (18)

and

η± = max{±η(x),0}, ξ± = max{±ξ(x),0}.
By our hypotheses (4), both ξ and η are supported inside �l .

Under the assumption that both ξ(x) and η(x) do not change their signs a.e. x ∈ R
2, we

have

Theorem 2.2 (Stability of essential spectrum)

σess(Aε̃(β)) = σess(Aε0(β)).

This result means that the insertion of a line defect does not change the essential spectrum
of the nonnegative operator A0(β) according to the background medium. It is a consequence
of Weyl’s theorem on the stability of the essential spectrum (see Sect. XIII.4 in [26]).

3 Existence of Eigenvalues Created by Line Defects

In this section we consider the case that the perturbed medium is homogeneous inside the
line defect �̃l , more precisely,

ε̃(x) =
{

ε1, if x ∈ �l

ε0(x), if x /∈ �l
, μ̃(x) =

{
μ1, if x ∈ �l

μ0(x), if , x /∈ �l
,
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where ε1 and μ1 are two positive constants which are assumed to satisfy

ε1 ≥ ε0(x), μ1 ≥ μ0(x) a.e. x ∈ R
2, (19)

and �l is defined in (4). As we mentioned in Sect. 2, the background medium described
by ε0(x) and μ0(x) which satisfy condition (3) is called a photonic crystal. Floquet-Bloch
theory [22, 26] shows that the spectrum of the periodic operator Aε0(β) is the union of a
countable number of bands; more precisely, there exist continuous periodic functions λj (k),
j = 1,2,3, . . . on R

2 with period 2π , such that

σ
(
Aε0(β)

) =
∞⋃

j=1

λj (Q)

where Q = [−π,π)2 is called Brillioun zone in physical literature [17]. Bands can overlap
and fill all the real semiaxis, or can be separated by the gaps. The existence of gaps in the
spectra of the periodic Maxwell operators was studied by many authors, we refer to [12, 15]
for scalar model, [13] for two-dimensional photonic crystals, and [8] for the full vectorial
Maxwell operators. As a somewhat straightforward application of the high contrast results
on existence of gaps developed in, e.g., [12, 13, 15], it was shown in [28] that an appropriate
choice of β leads to an effective high contrast, thus gap can be created. (However, no attempt
is made to give a complete survey on this subject here.)

Although it is usually assumed in the photonic crystal theory that ε0(x) and μ0(x) are
both periodic functions, this is unnecessary for the basic results we get in this paper. In the
sequel, we suppose that B = (a, b) is a band gap in the spectrum of the operator Aε0(β)

associated with the periodic background medium, where 0 < a < b < ∞. For any τ ∈ B ,
we can choose d > 0 such that

Iτ,d ≡ [τ − d, τ + d] ⊂ B. (20)

The following theorem is a development of Theorem 2 in [11] and Theorem 1 in [23].

Theorem 3.1 Let B = (a, b) be a band gap in the spectrum of the operator Aε0(β). For any
interval Iτ, d satisfying (20), if at least one of the conditions below is satisfied,

i) for ε1μ1 fixed, and

l2 ≥ 2(τε1μ1 − β2)

d2ε2
1μ

2
1

inf
φ∈C2

0 (�)

‖φ‖=1

(

‖�nk · ∇φ‖2

(

1 +
√

1 + d2ε2
1μ

2
1‖�φ‖2

4(τε1μ1 − β2)2‖�nk · ∇φ‖4

))

, (21)

or
ii) for l fixed, and

ε1μ1 ≥ 2τ

l2d2
inf

φ∈C2
0 (�)

‖φ‖=1

(

‖�nk · ∇φ‖2

×
(

1 +
√

max

{

0,1 + d2(‖�φ‖2 − 4l2β2‖�nk · ∇φ‖2)

4τ 2‖�nk · ∇φ‖4

}))

, (22)

where �nk is a unit vector which parallels with the vector ∇φ, then the interval Iτ, d contains
at least one eigenvalue of the perturbed operator Aε̃(β).
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We shall first give some comments on (21) and (22) before the proof. In fact we can give
simple forms of conditions (21) and (22). Using the inequality

√
1 + a < 1 + a

2
for a > 0

and neglecting the term −4l2β2‖�nk · ∇φ‖2 in (22), the conditions (21) and (22) can be
simplified as

l2 ≥ τε1μ1 − β2

d2ε2
1μ

2
1

inf
φ∈C2

0 (�)

‖φ‖=1

(

4‖�nk · ∇φ‖2 + d2ε2
1μ

2
1‖�φ‖2

4(τε1μ1 − β2)2‖�nk · ∇φ‖2

)

and

l2ε1μ1 ≥ τ

d2
inf

φ∈C2
0 (�)

‖φ‖=1

(

4‖�nk · ∇φ‖2 + d2‖�φ‖2

4τ 2‖�nk · ∇φ‖2

)

,

respectively. For � = {x ∈ R
2| |x| ≤ 1}, we can further estimate by using φ =

√
3
π
(1− (x2

1 +
x2

2 )) as an approximate function. Set

�nk = 1
√

x2
1 + x2

2

(x1, x2)
�,

one can easily verify that such a choice satisfies (25), (28) and (31). Simple calculations
show that ‖φ‖ = 1, ‖�nk ·∇φ‖ = √

6 and ‖�φ‖ = 4
√

3. Thus (21) and (22) can be expressed
on simple forms as

l2 ≥ 24(τε1μ1 − β2)

d2ε2
1μ

2
1

+ 2

τε1μ1 − β2

and

l2ε1μ1 ≥ 24τ

d2
+ 2

τ
,

respectively.
Now we shall prove this theorem.

Proof By Theorem 2.2, we know that if Aε̃(β) has spectrum inside the gap in the spectrum
of Aε0(β), this spectrum must consist of isolated eigenvalues with finite multiplicity only.
Since σ(Aε̃ (β)) = {0} ∪ σ(Aε̃(β)), it is equivalent to prove the existence of eigenvalues of
the operator Aε̃ (β) in the interval Iτ,d . Hence it suffices to prove this theorem if we can find
an approximate eigenfunction �u of the operator Aε̃ (β) such that

‖(Aε̃ (β) − τ)�u‖ε̃ ≤ d‖�u‖ε̃ . (23)

Since the medium is homogeneous inside the defect strip �̃l , we have

Aε̃ (β) = (ε1μ1)
−1∇β × ∇β ×

= (ε1μ1)
−1∇β(∇β ·) − (ε1μ1)

−1∇β · ∇β ⊗ I3

= (ε1μ1)
−1∇β(∇β ·) − (ε1μ1)

−1�β ⊗ I3 (24)
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inside the defect strip, where I3 is the identity operator on C
3 and �β = � − β2 with � =

∂2
1 + ∂2

2 .
We set a real-valued cut-off function φ(x) such that φ(x) ∈ C2

0 (�) and ‖φ‖ = 1. Further,
we introduce φl(x) ≡ 1

l
φ( x

l
) for l > 0. One can easily see that ‖φl‖ = 1. Then we will

construct an approximate eigenfunction �ul in the following way:

�ul := eikβ ·�xφl(x)ζ for �x ∈ R
3,

where ζ = (ζ1, ζ2,0)� ∈ R
3, |ζ | = 1 and ζ is chosen in such a way:

ζ · ∇βφ = 0, (25)

kβ ≡ (k�,−β)� for k = (k1, k2)
� ∈ R

2 and

|k|2 = τε1μ1 − β2. (26)

Since τ ∈ B , in view of Theorem 2.1, we have τ ≥ ρ−β2, where ρ− is defined in (17).
Using the assumption (19), we have

β2 ≤ τρ−1
− ≤ τε1μ1. (27)

Hence (26) makes sense. We further choose kβ such that

kβ · ζ = 0. (28)

In fact we can see from (25) and (28) that the vector k is parallel to the vector ∇φ. Obviously
we can see �ul defined above belongs to the space Dom(Aε̃ (β)) and also ‖�ul‖ = 1. Since

∇β · (�ul) = (∇β · ζ )(φle
ikβ ·�x) = ζ · (∇βφl)e

ikβ ·�x + ikβ · ζφle
ikβ ·�x = 0,

by applying (24) and (26) we have

∇β × ∇β × �ul

= −�β ⊗ I3 �ul

= (−� + β2) ⊗ I3

(
eikβ ·�xφl(x)ζ

)

= ( − �(eikβ ·�x)φl − eikβ ·�x�φl − 2∇(eikβ ·�x) · ∇φl + β2eikβ ·�xφl

)
ζ

= (τε1μ1e
ikβ ·�xφl − eikβ ·�x�φl − 2ieikβ ·�xk · ∇φl)ζ.

Now we can estimate the term ‖(Aε̃ (β) − τ)�ul‖ε̃ . Since k and φl are real-valued, using the
identity above we have

‖Aε̃ (β)�ul − τ �ul‖2
ε̃

= μ−2‖∇β × ∇β × �ul − ε1μ1τ �ul‖2

= μ−2‖(−eikβ ·�x�φl − 2ieikβ ·�xk · ∇φl)ζ‖2

= μ−2‖�φl + 2ik · ∇φl‖2

= μ−2(‖�φl‖2 + 4‖k · ∇φl‖2)

= μ−2l−4‖�φ‖2 + 4μ−2l−2‖k · ∇φ‖2.
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Hence, to ensure the inequality (23), the following inequality is sufficient:

μ−2l−4‖�φ‖2 + 4μ−2l−2‖k · ∇φ‖2 < d2ε2
1 . (29)

Inequality (29) is equivalent to

l4d2ε2
1μ

2
1 > ‖�φ‖2 + 4l2‖k · ∇φ‖2. (30)

We define

�nk = |k|−1k = (τε1μ1 − β2)− 1
2 k (31)

as the unit vector according to k. Then we can rewrite (30) as

(l2ε1μ1)
2 > d−2

(‖�φ‖2 + 4(τ l2ε1μ1 − l2β2)‖�nk · ∇φ‖2
)
. (32)

We will consider (32) in two different cases.
i) For ε1μ1 fixed, if

l2 ≥ 2(τε1μ1 − β2)

d2ε2
1μ

2
1

inf
φ∈C2

0 (�)

‖φ‖=1

(

‖�nk · ∇φ‖2

(

1 +
√

1 + d2ε2
1μ

2
1‖�φ‖2

4(τε1μ1 − β2)2‖�nk · ∇φ‖4

))

.

the inequality (23) holds.
ii) For l fixed, if

ε1μ1 ≥ 2τ

l2d2
inf

φ∈C2
0 (�)

‖φ‖=1

(

‖�nk · ∇φ‖2

×
(

1 +
√

max

{

0,1 + d2(‖�φ‖2 − 4l2β2‖�nk · ∇φ‖2)

4τ 2‖�nk · ∇φ‖4

}))

the inequality (23) holds. Thus the theorem is proved. �

Remark 3.1 There is a very important question which is still not clear: Can eigenvalues
created by line defects be embedded in the essential spectrum of the background medium?
A similar argument concerning this issue in optical waveguides, the traditional counterpart
of photonic crystal fibers, has been studied in [4] and [18]. A traditional optical waveguide is
a dielectric medium whose cross section differs only by a compactly supported perturbation
from a homogeneous reference medium. In this case, they conclude that the eigenvalues
created by the perturbation can not embed in the essential spectrum of the reference medium,
except possibly the lower edge of the essential spectrum. For the Schrödinger operators,
similar problem has been intensively studied. See, e.g., [24] and references therein.

4 Combes-Thomas Estimates

Classical wave operators, e.g., acoustic operators and Maxwell operators, can be regarded as
generalized Schrödinger operators. Usually they satisfy exponential decay estimates which
are called Combes-Thomas estimates in mathematical physics. See, e.g. [1, 5, 9, 10, 14, 19,
27].
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We write R(z) = (Aε0(β) − zI)−1 for z ∈ ρ(Aε0(β)) and R(z) = (Aε0(β) − zI)−1 for
z ∈ ρ(Aε0(β)). In the sequel, we formulate the modified Combes-Thomas estimates on the
decay of the resolvent R(z) and the operator ∇β × R(z) (see Theorems 4.1 and 4.3 below).
Theorem 4.1 has been formulated in [25], the main idea of its proof is based on Lemma 12
in [9] and Lemma 15 in [10]. Then we argue as proof of Lemma 16 in [10] to prove Theo-
rem 4.3. As we will see in Sect. 5 that these estimates are very important for studying the
behavior of guided waves away from line defects. It is worth noting that the periodic condi-
tions (3) for ε0(x) and μ0(x) are unnecessary for deriving these estimates in this section.

Let χx,h be the characteristic function of a square of side 2h centered at x, i.e.,

χx,h = χ�x,h

where

�x,h = {y ∈ R
2 | |y1 − x1| ≤ h, |y2 − x2| ≤ h}.

For a vector ϑ ∈ C
n, n ∈ N, we set |ϑ | =

√∑n

j=1 |ϑj |2. For a matrix C = (cjk), 1 ≤ j ≤ m,

1 ≤ k ≤ n, we set |C|∞ = max1≤j≤m

∑n

k=1 |cjk|. And for a measurable function f (x), we
set ‖f ‖∞ = esssup|f |. Finally we denote by 〈·, ·〉 the inner product of the Hilbert space H

with the norm ‖ · ‖.
First, we give the estimate on the resolvent R(z). We refer to Theorem 5.1 in [25] for the

proof.

Theorem 4.1 Let z ∈ ρ(Aε0(β)). Then for any n ∈ N, h > 0 and 0 < ν < 1, we have

‖χx,hR
n(z)χy,h‖ε0 ≤

((
1 + ν

1 − ν

)2 1

d

)n

e2
√

2hνθ0e−νθ0|x−y| for all x, y ∈ R
2 (33)

with

θ0 = d

4

√
μ0,−

d + |z| , (34)

where

d ≡ dist(z, σ (Aε0(β))) = inf
�u∈Dom(Aε0 (β)), ‖�u‖ε0 =1

‖(Aε0(β) − zI)�u‖ε0

and μ0,− is defined in (2). The norm in the left hand side of (33) is the operator norm in Hε0 ,
where the definition of Hε0 is analogous to Hε in (12).

Remark 4.1 It is worth noting that the resolvent decay exponentially fast, and the rate of
exponential decay grows if d (the distance from z to the edge of σ(Aε0(β))) grows. For
Schrödinger operators, results of [1] show that the rate of exponential decay, which also
depends on the distance from z to the edge of the spectrum, behaves as

√
(z − α)(β − z).

In the sequel, we formulate the estimate on the operator ∇β × R(z). However, we shall
first derive some interior regularity estimates needed.

We first introduce the Hermite matrix

∂β :=
( 0 iβ ∂2

−iβ 0 −∂1

−∂2 ∂1 0

)

, for β > 0,
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and then formally define a vector-valued operator

∂β �u :=
(

∂2u3 + iβu2

−∂1u3 − iβu1

∂1u2 − ∂2u1

)

. (35)

The domain of ∂β , which is denoted by Dom(∂β), is the closure of C∞
0 (R2,C

3) in the norm

(‖�u‖2
ε0

+ ‖∂β �u‖2
ε0

)
1
2 for any �u ∈ C∞

0 (R2,C
3),

and ∂β is a closed densely defined operator on Hε0 . We also introduce the weighted Hilbert
space

H�,ε0 := {�u | �u ∈ L2(�, ε0dx;C
3)},

where � is an open subset of R
2. Then we can also define the restriction of the operator ∂β

as the closed densely defined operator on the space H�,ε0 by ∂β,� in the same way for
�u ∈ C∞

0 (�,C
3) with ∂β,��u ∈ H�,ε0 . For �1 ⊂ �, if �u ∈ Dom(∂β,�), then �u |�1∈ Dom(∂β,�1)

and ∂β,��u |�1= ∂β,�1 �u |�1 . Hence we can write ∂β,��u as ∂β �u for simplicity.
We can easily find from (35) and (9) that ∇β × �u = ∂β �u and Aε0(β) = ε−1

0 ∂βμ−1
0 ∂β . Thus

we use ∇β× and ∂β without difference in the following.
For the scalar valued function φ ∈ C∞(R2;R), we define the matrix-valued operator ∂β∗

by

∂β ∗ φ ≡
( 0 iβφ ∂2φ

−iβφ 0 −∂1φ

−∂2φ ∂1φ 0

)

. (36)

A straightforward calculation shows that

∇β × (φ�u) = (∂β ∗ φ)�u + φ∂β �u
for any φ ∈ C∞(R2;R), and �u = (u1, u2, u3) ∈ Vε0 , where Vε0 is defined in (13). Finally, we
set

V�,ε0 := {�u ∈ H�,ε0 | ∂β �u ∈ H�,ε0}.

Definition 4.1 A function �u ∈ V�,ε0 is said to be a weak solution for the equation

ε−1
0 ∂βμ−1

0 ∂β �u = �w in � (37)

with �w ∈ H�,ε0 , if it satisfy the equation

〈∂β �v,μ−1
0 ∂β �u〉� = 〈�v, �w〉�,ε0 , for all �v ∈ C∞

0 (�;C
3). (38)

Then we have the following theorem:

Theorem 4.2 Suppose �u ∈ V�,ε0 is a weak solution of (37) in an open subset � ⊂ R
2 with

�w ∈ H�,ε0 , then for any measurable subset �0 ⊂⊂ � with dist(�0, ∂�) ≥ δ for some δ > 0,
there holds

〈∂β �u,μ−1
0 ∂β �u〉�0 ≤ κ

(
1

μ0,−
‖�u‖2

�,ε0
+ μ0,−‖ �w‖2

�,ε0

)

(39)

where κ = κ(δ,β, ε0,−).
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Proof Let �1 be an open set, such that

�0 ⊂⊂ �1 ⊂⊂ �

with

dist(�0, ∂�1) ≥ 1

2
δ and dist(�1, ∂�) ≥ 1

4
δ.

Furthermore, we can find a scalar function φ(x), such that φ(x) ∈ C∞
0 (�1), 0 ≤ φ(x) ≤ 1,

for x ∈ R
2, φ(x) ≡ 1 in �0, and ‖∂1φ‖∞ < 2

δ
, ‖∂2φ‖∞ < 2

δ
. From (36) we can see

|∂β ∗ φ|∞ ≤ Cδ,β,

where Cδ,β = β + 4
δ
. Then the following part of the proof is just a modified form of [10].

Since φ2 �u ∈ V�,ε0 with compact support, it follows from (38) that

〈∂β(φ2 �u),μ−1
0 ∂β �u〉� = 〈φ2 �u, �w〉�,ε0 .

Since

〈∂β(φ2 �u),μ−1
0 ∂β �u〉� = 〈∂β �u,φ2μ−1

0 ∂β �u〉� + 2〈(∂β ∗ φ)�u,φμ−1
0 ∂β �u〉�.

Using the inequality ab ≤ γ

2 a2 + 1
2γ

b2 for any a, b, and γ > 0, then we have

0 ≤ 〈∂β �u,φ2μ−1
0 ∂β �u〉�

= 〈φ2 �u, �w〉�,ε0 − 2〈(∂β ∗ φ)�u,φμ−1
0 ∂β �u〉�

≤ ‖�u‖�,ε0‖ �w‖�,ε0 + 2〈(∂β ∗ φ)�u,μ−1
0 (∂β ∗ φ)�u〉 1

2
�〈∂β �u,φ2μ−1

0 ∂β �u〉 1
2
�

≤ 1

2μ0,−
‖�u‖2

�,ε0
+ μ0,−

2
‖ �w‖2

�,ε0
+ 2

1

μ0,−
Cδ,β

1

ε0,−
‖�u‖�,ε0 + 1

2
〈∂β �u,φ2μ−1

0 ∂β �u〉�.

This implies

〈∂β �u,φ2μ−1
0 ∂β �u〉� ≤ 1

μ0,−

(

1 + 4
1

ε0,−Cδ,β

)

‖u‖2
�,ε0

+ μ0,−‖ �w‖2
�,ε0

.

We set κ = (1 + 4 1
ε0,−Cδ,β

), then the inequality (39) follows from the fact:

〈∂β �u,μ−1
0 ∂β �u〉�0 ≤ 〈∂β �u,φ2μ−1

0 ∂β �u〉�.

�

Corollary 4.1 For any �u ∈ Vε0 be a weak solution of the equation

ε−1
0 ∂βμ−1

0 ∂β �u = �w in R
2

where �w ∈ Hε0 , we have

‖∂β �u‖ ≤ √
κμ0,+

(
1√
μ0,−

‖�u‖ε0 + √
μ0,−‖ �w‖ε0

)

where κ = infδ>0 κδ .
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Now we can derive the estimate on the decay of the operator ∂βR(z) (i.e., the operator
∇β × R(z)).

Theorem 4.3 For any z ∈ ρ(Aε0(β)), the operator ∂βR(z) : Vε0 → Vε0 has the bound:

‖∂βR(z)‖ ≤ 1

d

√
κ

(√
μ0,+
μ0,−

+ √
μ0,−μ0,+(|z| + d)

)

where d = dist(z, σ (Aε0(β))). Furthermore, for any h > 0 and 0 < ν < 1, we have

‖χx,h∂βR(z)χy,h‖ ≤ �

(
1 + ν

1 − ν

)2 1

d
e6

√
2hνθ0e−νθ0|x−y| (40)

for all x, y ∈ R
2 with |x − y| ≥ 2h, where

� = √
κμ0,+

(
1√
μ0,−

+ |z|√μ0,−
)

,

and the definitions of θ0 and d are the same as in Theorem 4.1. The norm in the left hand
side of (40) is the operator norm in L2(R2;C

3).

Proof For any �u ∈ Hε0 , we have R(z)�u ∈ Vε0 . Note that

Aε0(β)R(z) = (
I + zR(z)

)
,

i.e.,

ε−1
0 ∂βμ−1

0 ∂βR(z) = (
I + zR(z)

)
,

by applying Corollary 4.1 and the inequality ||R(z)||ε0 ≤ 1
d

, we have

‖∂βR(z)‖ ≤ √
κμ0,+

(
1√
μ0,−

‖R(z)‖ε0 + √
μ0,−‖I + zR(z)‖ε0

)

≤ √
κμ0,+

(
1√
μ0,−

1

d
+ √

μ0,−
( |z|

d
+ 1

))

= 1

d

√
κ

(√
μ0,+
μ0,−

+ √
μ0,−μ0,+(|z| + d)

)

.

Next, we shall prove (40). Let x, y ∈ R
2 and h > 0 with |x − y| > 2h, one can see that

κx,3hκy,h ≡ 0. Thus for any �u ∈ Hε0 , by applying Corollary 4.1, we have

‖χx,h∂βR(z)χy,h�u‖

≤ √
κμ0,+

(
1√
μ0,−

‖χx,3hR(z)χy,h�u‖ε0 + √
μ0,−‖χx,3h(I + zR(x))χy,h�u‖ε0

)

≤ √
κμ0,+

((
1√
μ0,−

+ |z|√μ0,−
)

‖χx,3hR(z)χy,h�u‖ε0 + √
μ0,−‖χx,3hχy,h�u‖ε0

)

= √
κμ0,+

(
1√
μ0,−

+ |z|√μ0,−
)

‖χx,3hR(z)χy,h�u‖ε0 .
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We can further apply Theorem 4.1 to obtain

‖χx,h∂βR(z)χy,h‖ ≤ �‖χx,3hR(z)χy,h‖
≤ �‖χx,3hR(z)χy,3h‖

≤ �

(
1 + ν

1 − ν

)2 1

d
e6

√
2hνθ0e−νθ0|x−y|

for all x, y ∈ R
2 and |x − y| ≥ 2h, where � = √

κμ0,+( 1√
μ0,− + |z|√μ0,−). �

Note that σ(Aε0(β)) = σ(Aε0(β))
⋃{0}, we are fortunate to see that not only the con-

clusions but also the proofs of the Combes-Thomas estimates on R(z) hold for their coun-
terparts on R(z) = (Aε0(β) − zI)−1 by carefully checking the proofs of Theorems 4.1 and
4.3. More precisely, we have the following two theorems:

Theorem 4.4 Let z ∈ ρ(Aε0(β)). Then for any n ∈ N, h > 0 and 0 < ν < 1, we have

‖χx,hR
n(z)χy,h‖ε0 ≤

((
1 + ν

1 − ν

)2 1

d

)n

e2
√

2hνθ0e−νθ0|x−y| for all x, y ∈ R
2 (41)

with

θ0 = d

4

√
μ0,−

d + |z| ,

where

d = dist(z, σ (Aε0(β))) = inf
�u∈Dom(Aε0 (β)), ‖�u‖ε0 =1

‖(Aε0(β) − zI)�u‖ε0

and μ0,− is defined in (2). The norm in the left hand side of (41) is the operator norm in Hε0 ,
where Hε0 is defined in (12).

Theorem 4.5 For any z ∈ ρ(Aε0(β)), the operator ∂βR(z) : Vε0 → Vε0 has the bound:

‖∂βR(z)‖ ≤ 1

d

√
κ

(√
μ0,+
μ0,−

+ √
μ0,−μ0,+(|z| + d)

)

where d = dist(z, σ (Aε0(β))) and μ0,± is defined in (2). Furthermore, for any h > 0 and
0 < ν < 1, we have

‖χx,h∂βR(z)χy,h‖ ≤ �

(
1 + ν

1 − ν

)2 1

d
e6

√
2hνθ0e−νθ0|x−y| (42)

for all x, y ∈ R
2 with |x − y| ≥ 2h, where

� = √
κμ0,+

(
1√
μ0,−

+ |z|√μ0,−
)

,

and the definitions of θ0 and d are the same as those in Theorem 4.4. The norm in the left
hand side of (42) is the operator norm in L2(R2;C

3).
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5 The Exponential Decay of Guided Waves Away from Line Defects

In this section we show that any eigenfunctions created by a line defect strip decay exponen-
tially away from the defect strip. Following Sect. 3, we describe the background medium by
ε0 and μ0, and the perturbed medium by ε̃(x) and μ̃(x), we also adapt Aε̃ (β) as the per-
turbed operator according to Aε0(β).

Let B be a spectral gap of Aε0(β) and z ∈ σ(Aε̃ (β)) ∩ B . It follows from Theorem 2.2
that z must be an eigenvalue with finite multiplicity of the operator Aε̃ (β).

Theorem 5.1 Let z ∈ σ(Aε̃ (β)) ∩ B and �u be the corresponding eigenfunction, then we
have

‖χx,h�u‖ε̃ ≤ C0e
− 1

2 νθ0|x−y|

for all x, y ∈ R
2 with |x − y| ≥ 2h, and 0 < ν < 1, where χx,h is the characteristic function

of the set {y||x − y| ≤ h} with h > 0, the constant C0 depends on ν, z, ε0,μ0, ε,μ and the
distance from z to the edge of σ(Aε0(β)).

To prove this theorem, the following lemma is needed.

Lemma 5.1 Let z ∈ σ(Aε̃ (β))∩B and �u be the corresponding eigenfunction of the operator
Aε̃ (β), then we have

‖∇β × �u‖ ≤
√

zε̃2+μ̃+‖�u‖ε̃ ,

where ε̃+ and μ̃+ are defined by

ε̃+ = sup
x∈R2

ε̃(x), μ̃+ = sup
x∈R2

μ̃(x).

Proof Since Aε̃ (β) + I is strictly positive on the weighted space Hε̃ , we can rewrite the
equation

Aε̃ (β)�u = z�u, �u ∈ Dom
(
Aε̃ (β)

)

as

�u = (z + 1)(A−1
ε̃

(β) + I )−1 �u.

Then we have

‖∇β × �u‖2
ε̃ = (z + 1)〈∇β × �u,∇β × (A−1

ε̃
(β) + I )−1 �u〉ε̃

≤ (z + 1)μ̃+〈∇β × �u, μ̃−1∇β × (A−1
ε̃

(β) + I )−1 �u〉ε̃
= (z + 1)μ̃+〈�u,∇β × μ̃−1∇β × (A−1

ε̃
(β) + I )−1 �u〉ε̃

= (z + 1)μ̃+〈�u, ε̃Aε̃ (β)(A−1
ε̃

(β) + I )−1 �u〉ε̃
≤ (z + 1)ε̃+μ̃+〈�u, �u〉ε̃ .

This implies that

‖∇β × �u‖ε̃ ≤ √
(z + 1)ε̃+μ̃+‖�u‖ε̃ ,
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i.e.,

‖∇β × �u‖ ≤
√

(z + 1)ε̃2+μ̃+‖�u‖ε̃ .

�

Remark 5.1 We can also use Corollary 4.1 to obtain a similar estimate.

Then we shall complete the proof of Theorem 5.1.

Proof As in [11, 23], we first introduce a quadratic form:

a[�v, �u] := 〈Aε0(β)�v, �u〉ε0 − z〈�v, �u〉ε0

for all �v ∈ Dom(Aε0(β)), and �u ∈ Dom(Aε̃ (β)). Let �v = R(z)χx �u, where R(z) =
(Aε0(β) − zI)−1, then we have

a[�v, �u] = 〈(Aε0(β) − zI)�v, �u〉ε0

= 〈χx �u, �u〉ε0

= ‖χx �u‖2
ε0

≤ ε0,+‖χx �u‖2. (43)

On the other hand, using Aε̃ (β)�u = z�u, we get

a[�v, �u] = 〈ε−1
0 ∇β × μ−1

0 ∇β × �v, �u〉ε0 − z〈�v, �u〉ε0

= 〈∇β × �v,μ−1
0 ∇β × �u〉 − z〈�v, �u〉ε0

= 〈∇β × �v,μ−1
0 ∇β × �u〉 − z〈�v, �u〉ε0

+
〈

�v,
ε

ε0
Aε(β)�u

〉

ε0

−
〈

�v,
ε

ε0
Aε(β)�u

〉

ε0

= −〈∇β × �v,η∇β × �u〉 + 〈∇β × �v,μ−1∇β × �u〉

− z〈�v, �u〉ε0 + 〈�v, εξAε(β)�u〉ε0 + 〈�v, z�u〉ε0 −
〈

�v,
ε

ε0
Aε(β)�u

〉

ε0

= −〈∇β × �v,η∇β × �u〉 − 〈�v, εξAε(β)�u〉ε0 + 〈∇β × �v,μ−1∇β × �u〉
− 〈�v,∇β × μ−1∇β × �u〉

= −〈∇β × �v,η∇β × �u〉 − 〈�v, zεξ �u〉ε0 .

Taking account of Lemma 5.1, Theorems 4.4 and 4.5, we have

|a[�v, �u]| ≤ ‖χη∇β × �v‖‖η‖∞‖∇β × �u‖ + z‖ε − ε0‖∞‖χξ �v‖‖�u‖
≤ C1(‖χη∇β × R(z)χx‖ + ‖χξR(z)χx‖)
≤ C2e

−νθ0|x−y|. (44)

Thus Theorem 5.1 follows from (43) and (44). �
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